Adbing Valuethough Intercisapilinay

 ConverationWhy physicists (and mathematicians and maybe all of us) ought to care about interdisciplinarity

The nature of physics departments

\square Physics is a fairly small profession armong the sciences
\square As a result, most of our teaching is in service courses.

When it comes to teaching non-physicists. ..Don't mess with success!

\square We know how to teach physics.
\square Physics is physics is physics ... for everybody.
\square We have a working model - and dozens of standard texts we can use with all kinds of resources.
\square This makes teaching non-majors fairly straightforward - even if time consuming due to the problems of administering large-dasses.
\square No thinking required!

Unfortunately...

\square 1. Our dients have started to pay attention

- In 2000, ABET (the engineering accreditation organization) shifted its foas fromcourse requirements to learning requirements
- In 2009, AAMC (the medical school organization) proposed to shift its foas fromcourse requirements to learning requirements

PER chimes in!

\square 2. Over the past 20-30 years, research has increasingly shown the failure of large traditional physics courses to
\square build good concepts

- improve student attitudes towards physics
- help students learn to think saientifically
\square Research-based instrudional methods have begun to document learning - at least along some dimensions.

9
 The challenge

Project NEXUS

The SFFP Report

\square In 2009, AAMC working with HHMI published Scientific Foundations for Future Physidans - a call for rethinking pre-med education in the US to
\square bring in more and stronger coordinated sience - biology, math, chemistry, and physics
\square foas on scientific skills and competendies

In the summer of 2010, HHMI

Create a proposal to develop four sets of prototype materials for biologists and premeds with a foas on scientific competency building and interdisdiplinary links in
\square Chemistry (Purdue)

- Math (UMBC)
\square Physics (UMCP)
\square Capstone case study course (U of Miami)

Project NEXUS

\square The result is the National Experiment in Undergraduate Sience Education

- A 4-year \$1.8 M project of the Howard Hughes Medical Institute
\square At UMCP we have opened an interdisaplinary conversation with the goal of creating a physics course explicity designed to meet the needs of biologists and pre-health-care-professionals.

The NEXUS Development Team(UMCP)

\square Physidsts
\square LOe Redish
\square Wolfgang Losert
\square Chandra Turpen

- Vashti Sawtelle
\square Ben Dreyfus
- Ben Geller
- Arnaldo Vaz (Br.)
\square Biologists
- Todd Cooke
- Karen Carleton
- Joelle Presson
- Kaci Thompson

Education (Bio)

- Julia Svoboda
- Gili Marbach-Ad
- Kristi Hall-Burke

Disaussants: UMCP co-conspirators

\square Physicists

- Arthur LaPorta
- Michael Fisher
- Peter Shawhan
\square Biologists
- J eff J ensen
- Richard Payne
- Marco Colombini
\square Patty Shields
- Jason Kahn
- Lee Friedman
\square Edurcation
- Andy 日by (Phys)
- Dan Levin (Bio)

J en Richards (Chem)

Disaussants: Off-campus collaborators

\square Physicists

- Catherine Crouch*
(Swarthmore)
- Royce Za*
(Virginia Tech)
- Mark Reeves
(George Washington)
- Lilly Cui \&

Eric Anderson
(UMBC)
\square Stephen Durbin (Purdue)
\square Dawn Meredith (U. New Hampshire)
\square Biologists
\square Mike Klymkowski*
(U. Colorado)
\square Chemists
\square Chris Bauer*
(U. New Hampshire)

- Melanie Cooper*
(Clemson)
*NSF TUES project

After much negotiation: PHYS 131-132

\square A separate course specifically designed to meet the needs of biology majors and pre-meds.
\square Intended as a second year dass. Prerequisites.

- 2 terms of biology
- Intro to cellular, molealar, evolution, ecology
- 1 termof general chenistry
- 2 terms of math for bio majors
- induding basic calculus and probability
\square We will consider ourselves successful if upper division bio dasses require us as a prerequisite.
\square A first draft of this dass was delivered in '11-'12.

Barriers to interdisciolinarity

Our initial negotiations immediately ran into a brick wall. Biologists and physicists had very different views of what to do.

Starting in a hard place

\square Biologists saw most of the traditional introductory physics dass as useless and irrelevant to biology - and our standard approach: "we can just apply physics in biological contexts" as trivial and uninteresting.
\square Physicists saw a coherent structure with no roomfor change.

A comment froma physics colleague

I would be indined also to approach it fromthe "other end": i.e., I would construct a list which has in it the absolute irredudible physics concepts and laws that have to be in a physics currialum This 'entitement' list will already take up a majority of the available space.

With a realistic assessment of how much space is available, it may become dearer what type of biorelated material one can even entertain to indude.

In two semesters it impossible to cover every topic in physics. The purpose of this question is to determine your priorities of the topics in the course. Below are the chapter headings from a typical textbook at this level. Please place the integer number of weeks for each chapter that, in your judgment, allows students to understand the material at the level you desire. Each week consists of 3 lectures, 1 discussion section, and a 2-hour laboratory. The total number of weeks should equal 26 to account for a course introduction at the beinning of the semester and a review at the end. Please do not use fractions of a week.
Units, dimensions and vectors
Linear motion
Two dimensional motion
Forces and Newton's Laws
Applications of Newton's laws
Kinetic energy and work
Potential energy and conservation of energy
Momentum and collisions
Rotations and torque
Angular momentum

Content is just a part of the story!

\square There is a "hidden currialum" - what we want and expect our students to learn about how to think and how to do science while they are learning the facts and methods taught in our dasses.

FromSFFP (AAMC-HHMI)

Competency II Apply quantitative reasoning and appropriate mathematics to desaribe or explain phenomena in the natural world.
Competiency E2 Dermonstrate understanding of the process of saientific inquiry, and explain how scientific knowledge is discovered and validated.
Connpetency E3 Demonstrate knowledge of basic physical prinaples and their applications to the understanding of living systems.
(Four more explicitly relevant for biology and cherristry)
\square To figure out how to pull all this apart and make sense of what is going on, we need to understand something about how people build coherent knowledge.
\square We are not just talking about teaching students some facts - or even procedures.
\square We are trying "acalturate" our students bring theminto a scientific commuity of pradice.

Thinking about thinking: some basic psychological prinaples

Experiment 1:
 How good is your memory?

Thread	Thimble	Bed	Rest
Pin	Haystack	Awake	Tired
Eye	Knitting	Dream	Snooze
Sewing	Cloth	Blanket	Doze
Sharp	Injection	Slumber	Snore
Point	Syringe	Nap	Yawn

[^0]
Experiment 2:

How good is your concentration?

26

Implications

\square Memory is reconstrudive and dynamic
\square What students call on in dass is based on their previous experience with school (and saience dasses).
\square Inappropriate student expectations can lead themto "'miss the gorilla in the dassroom" and miss the point of an adivity.
\square Inappropriate faculty expectations can lead to disappointment and tension with students.

A structure for thinking about thinking

Key concepts for disaussing interdisciplinarity

\square Framing -
\square The process of "choosing" a set of data in your
ervirorment to selectively pay attention to - equivalent to deciding that everything else can be safely ignored.
\square Epistemology -
\square Knowledge about knowledge:
What is the nature of the knowledge I amgoing to learn in this dass and what is it that I need to do to learn it?
\square Ontology -
\square What kinds of things are we talking about?

The cognitive/ socio-cultural

grainsize staircase

Psychohistory ($\mathrm{N} \sim 10^{20}$)

Framing

\square The behavior of individuals in a context is affected by their perception of the social context in which they find therselves.
\square That perception ads as a control structure that governs which of their wide range of behavioral responses they adivate/ use in a given situation

The culture of disaplines

\square Fromeach level of their experience with a disapline - small group, STBM dasses, broader school experiences - students bring control structures that tell themwhat to pay attention to in the context of adivities in a science dass.
\square Their framing of the adivity affects how they interpret the task and what they do.

Negotiating interdisciplinarity

It doesn't only matter what We think; how our students frame their saience dasses is critical to what they get out of them

Student attitudes towards

 interdisciplinarity: some data\square We have interviewed students about their attitudes towards mixing the sciences in two dasses.
\square Bio 3 - Organismal Biology
A required bio dass that explidtly uses
a lot of physics and chemistry.
\square Phys 131-132 - Physics for Biologists The first implementation of the NEXUS physics course that brings in a lot of bio and chem

Biology students bring expectations to their physics and biology dasses.

TRUSE 2012

6/3/12

An example in Phys 131

(Recitation acivity)

Estimate the work done in the particular unfolding shown

It didn't work the way we wanted

...protein folding is so complicated that you know you haven't even gotten up to what proteins are made of but just the protein itself is really complicated ... it was trying to apply a very simple basic physics thing to a whole protein, like even a subset of a protein ... and that was just not flying with us, because we knew it was really complicated and it was the sumof all these like interactions, and there's multiple kinds and it just isn't something that seems simple like that and it just didn't work because it's simplifying something that's really complicated too much

But this I'S the way they do it!

\square Anya had strong disaplinary epistemological framings:

- Biology is really complicated and you have to work your way up in the structure to get the whole thing.
- Physics oversimplifies by trying to model only a particular substructure of the protein
\square She showed this framing in other examples as well.

An example in Physics 132:

A Chemistry "misconception"

\square A critical biochemical process is the hydrolyization of ATP. This is the primary reaction that is used to deliver energy in biological systems.
\square In chemistry it is identified as a "misconception" that students assume "energy is stored in the ATP bond" whereas really the energy comes fromgoing from the weaker ATP bond to the stronger water-P bond.

A question from

the chemed literature

An O-P bond in ATP is referred to as a "high energy phosphate bond" because:
A. The bond is a partialarly stable bond.
B. The bond is a relatively weak bond.
C. Breaking the bond releases a significant quantity of energy.
D. A relatively small quantity of energy is required to break the bond
W. C. Galley, J. Chem Ed., 81:4 (2004) 523-525.

Phys 132	Galley	
A	32%	41%
B	47%	31%
C	79%	87%
D	26%	7%

Perhaps it's not always a misconception - sometimes it may be a framing issue.

TRUSE 2012

I put that when the bond's broken that's energy released. Even though I know, if I really think about it, that obviously that's not an energy-releasing mechanism... you always need to put energy in, even if it's like a really small amount of energy to break a bond. Yeah, but like. I guess that's the difference between like how a biologist is trained to think, in like a larger context and how physicists just focus on sort of one little thing. ... I answered that it releases energy, but it releases energy because when an interaction with other moleales, like water, primarily, and then it creates like an inorganic phosphate moleale that...is much more stable than the original ATP moleale.... I was thinking that larger context of this readion releases energy.

Disciplinary cultures

\square Although each sientific discipline has many praditioners with different approaches, our disassions with faculty and students leads us to consider some broad common themes.

Physics

\square Intro physics often stresses reasoning froma few fundamental (mathematically formulated) prindiples
\square Physiasts often stress building a complete understanding of the simplest possible (often abstract) examples - and often don't go beyond themat the introductory level.
\square Physidists quantify their view of the physical world, model with math, and think with equations.
\square Introductory physics typically restricts itself to the macroscopic level and almost never considers cherical bonds.

How physics looks to non-physicists

Biology

\square By its very choice of subject biology is irreduaibly complex. (Oversimplify and you die.)
\square Most introductory biology is qualitative.
\square Biology contains a fundamental historical component.
\square Much of introductory biology is descriptive (and introduces a large vocabulary) though
\square Biology - even at the introductory level - looks for mechanismand often considers micro-macro connedions.
\square Chemistry is much more important to intro bio than physics (or math).

Chemistry

\square Chemistry is about how atoms interact to formmoleales
\square Chemistry develops high-level principles and heuristics to help you think about how complex reactions take place.
\square Chemistry frequently crosses scales, conneding the microscopic with the macroscopic.
\square Chemistry often assumes a macroscopic enviromment-a liquid, gas, or aystal.
\square Chemistry often simplifies -- seleding the dominant readions to consider, idealizing situations and processes in order to allow an understanding of the most salient features.

Mathematics

\square Mathematics is about logical structures and abstract relationships. It's not "about" anything physical.
\square Math focuses on logical completeness - "proof" and the tightness of arguments that can be constructed within a restricted set of axioms and prindiples.
\square Most mathematicians I have spoken to want to deliver an "honorable" course - to all students, not just majors; one that corredly represents the mathematical structure of abstraction, reasoning, and proof.

Content: W hat's privileged?

\square Physicists see their subject as built up carefully fromobservation and the establishment of general prinaple.
\square To them much that is done is essential for what will come later.
\square Physicists see indined planes as essential (to learn to manipulate vectors in the simplest possible situation) and what happens in fluids as much too complex to be done in an intro dass (fromfirst prinaples).

Content: What's authentic?

\square Biologists see much (most?) of what we do in traditional intro physics as peripheral (at best) or irrelevant (at worst) to what biology students need to know.
\square Biologists see most of the "biology examples" put into an IPLS dass as trivial, uninteresting, and "not real biology".
\square We want to seek content and examples that will be seen by biologists (and by biology students) as autherlic - it helps make sense of something that has real importance in biology.

The Indined Plane/ Projectiles Debate

Pror Our physidists saw these topics as cruial for learning how to use vectors, a general and powerfu tool.
\square Conr Our biologists saw the indined plane and projectiles as typical physics hypersimplification with litte or no value.
The resolution we replaced these topics with examples frombiological motion and moved electric forces to the beginning to provide serious vector examples.

The Force / Energy Debate

\square Pro. Our biologists saw the emphasis on forces as superfluous and requested we do everything in terms of energy.
\square Corr Our physiasts considered forces as "privileged" - essential to establishing the fundamental concepts of motion
\square The resolution We reframed the treatment of forces as "The Newtonian Framework" analogous to "The Evolutionary Framework" in biology; something that sets the language and ontology - what you look for. This also darified what was model and what was framework.

Content decisions

\square Indude atomic and molealar examples from the first (since chemis a prereq.)
\square Enhance the treatment of energy, reduce the disaussions of force and momentum
\square Expand the treatment of thermodynamics and diffusion dramatically.
\square Biminate (ouch!) rotations, angular momentum and magnetism
\square Indude (as often as possible) authentic biological and chemical contexts and examples.

New approaches

\square Be very explicit about modeling
\square Why simple examples are done.
\square What is being ignored - and why.
\square Be very explicit about epistemology

- The danger of recall and "one-step thinking".
\square Building a safety net - a web of coherence
- Checking / metacognition
\square Use examples and problems frommodern biology and medicine research

We're started on a long path

\square The task of creating an effedive physics course for biology students turned out to be much harder and more interesting than we expected.
\square We have learned much even at this early stage about disciplinary altures - both among faculty and students.

There is still much to be done! Stay tuned!

For more detail see our posters

\square Ben Geller
\square Research on Students' Reasoning about Interdisciplinarity
\square J Ulia Svoboda

- Analyzing the interdisciplinary nature of tasks in a physics course for life science majors
\square Chandra Turpen
\square Conceptualizing '"disciplinary' in research and design of interdisciplinary leaming contexts

[^0]: Roediger \& McDermott J. Exp. Psych:
 Learning, Memory, \& Cognition. 21 (1995) 803-814.

